Launch and Assembly Reliability Analysis for
نویسنده
چکیده
NASA’s long-range goal is focused upon human exploration of Mars. Missions to Mars will require campaigns of multiple launches to assemble Mars Transfer Vehicles in Earth orbit. Launch campaigns are subject to delays, launch vehicles can fail to place their payloads into the required orbit, and spacecraft may fail during the assembly process or while loitering prior to the Trans-Mars Injection (TMI) burn. Additionally, missions to Mars have constrained departure windows lasting approximately sixty days that repeat approximately every two years. Ensuring high reliability of launching and assembling all required elements in time to support the TMI window will be a key enabler to mission success. This paper describes an integrated methodology for analyzing and improving the reliability of the launch and assembly campaign phase. A discrete event simulation involves several pertinent risk factors including, but not limited to: manufacturing completion; transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to TMI. The model accommodates varying numbers of launches, including the potential for spare launches. Having a spare launch capability provides significant improvement to mission success.
منابع مشابه
A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملMixed-Model Assembly Line Balancing with Considering Reliability
This paper presents a multi-objective simulated annealing algorithm for the mixed-model assembly line balancing with stochastic processing times. Since, the stochastic task times may have effects on the bottlenecks of a system, maximizing the weighted line efficiency (equivalent to the minimizing the number of station), minimizing the weighted smoothness index and maximizing the system reliabil...
متن کاملDesign and Simulation of a Moving-magnet-type Linear Synchronous Motor for Electromagnetic Launch System
The Electromagnetic Aircraft Launch System (EMALS) offers significant benefits to the aircraft, ship, personnel, and operational capabilities. EMALS has such advantages as high thrust, good controllability, reusable, etc., as a launching motor, a double-side plate Permanent Magnet Linear Synchronous Motor (PMLSM) can provide high instantaneous thrust. This paper presents the design and analysis...
متن کاملRobust Integral Sliding-Mode Control of an Aerospace Launch Vehicle
An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...
متن کاملThe finite element analysis of the linear hybrid reluctance motor for the electromagnetic launch system
The Electromagnetic Aircraft Launch System (EMALS) is being developed utilizing electrical and electronic technologies. EMALS is emerging in order to replace the existing steam catapult on naval carriers. Recently, the double-sided linear launcher has drawn increasing attention of researchers. This paper presents the design and analysis of the Linear Hybrid Reluctance Motor (LHRM). This new mot...
متن کامل